Home
Class 12
MATHS
If log(sqrt(3))5=a and log(sqrt(3))2=b, ...

If `log_(sqrt(3))5=a and log_(sqrt(3))2=b`, then `log_(sqrt(3))300` is equal to a)`2(a+b)` b)`2(a+b+1)` c)`2(a+b+2)` d)`a+b+4`

A

`2(a+b)`

B

`2(a+b+1)`

C

`2(a+b+2)`

D

`a+b+4`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

1/(cos80^(@))-sqrt(3)/(sin80^(@)) is equal to a) sqrt(2) b) sqrt(3) c)2 d)4

The value of log_(2)20log_(2)80-log_(2)5log_(2)320 is equal to a)5 b)6 c)7 d)8

If f'(x)=(1)/(-x+sqrt(x^(2)+1)) and f(0)=-(1+sqrt(2))/(2) then f(1) is equal to a) -log(sqrt(2)+1) b)1 c) 1+sqrt(2) d) 1/2log(1+sqrt(2))

tan ^(-1) sqrt3-cot ^(-1)(-sqrt3) is equal to A) pi B) (-pi)/2 C)0 D) 2 sqrt3

underset(x to 3) (lim)( sqrt(x) - sqrt(3) )/( sqrt( x^(2) -9) ) is equal to a)1 b)3 c) sqrt3 d)0