Home
Class 12
MATHS
If (1+x-3x^(2))^(10)=1+a(1)x+a(2)x^(2)+....

If `(1+x-3x^(2))^(10)=1+a_(1)x+a_(2)x^(2)+....+a_(20)x^(20),"then
"a_(2)+a_(4)+a_(6)+...+a_(20)` is equal to a)`(3^(10)+1)/(2)` b)`(3^(9)+1)/(2)` c)`(3^(10)-1)/(2)` d)`(3^(9)-1)/(2)`

A

`(3^(10)+1)/(2)`

B

`(3^(9)+1)/(2)`

C

`(3^(10)-1)/(2)`

D

`(3^(9)-1)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If (2x^(2)-x-1)^(5)=a_(0)+a_(1)x+a_(2)x^(2)+…+a_(10)x^(10) , then a_(2)+a_(4)+a_(6)+a_(8)+a_(10) is equal to : a)15 b)30 c)16 d)32

If (1+x-2x^(2))^(6)=1+a_(1)x+a_(2)x^(2)+….+a_(12)^(x^(12)) , then find the value of a_(2)+a_(4)+a_(6)+….+a_(12) .

If a_(1), a_(2), a_(3),…….,a_(20) are in AP and a_(1) + a_(20) = 45 , then a_(1) + a_(2) + a_(3)+……+a_(20) is equal to

If e^(e^(x))=a_(0)+a_(1)x+a_(2)x^(2)+…, then : a) a_(0)=1 b) a_(0)=e c) a_(0)=e^(e) d) a_(0)=e^(2)

If (1+x+2x^(2))^(20) =a_(0)+a_(1)x+a_(2)x^(2) +a_(3)x^(3)+….+a_(40)x^(40), then find the value of a_(1)+a_(3)+a_(5)+….+a_(39) .

If a_(1), a_(2), a_(3),….,a_(n) are in AP and a_(1) = 0 , then the value of ((a_(3))/(a_(2)) + (a_(4))/(a_(3)) +...+(a_(n))/a_(n-1))-a_(2) ((1)/(a_(2)) + (1)/(a_(3))+...+(1)/(a_(n-2))) is equal to a) (n-2) + (1)/((n-2)) b) (1)/((n-2)) c)(n - 2) d)(n - 1)

Let (1+x)^(n) = 1+a_(1)x + a_(2)x^(2) + ……+ a_(n)x^(n) . If a_(1), a_(2) and a_(3) are in AP, then the value of n is

If a_(1), a_(2), …, a_(50) are in GP, then " "(a_(1)-a_(3)+a_(5)-…+a_(49))/(a_(2)-a_(4)+a_(6)-…+a_(50)) is equal to :