Home
Class 12
MATHS
tan^(-1)""(m)/(n)-tan^(-1)""(m-n)/(m+n) ...

`tan^(-1)""(m)/(n)-tan^(-1)""(m-n)/(m+n)` is equal to a)`tan^(-1)""(n)/(m)` b)`tan^(-1)""(m+n)/(m-n)` c)`(pi)/(4)` d)`tan^(-1)((1)/(2))`

A

`tan^(-1)""(n)/(m)`

B

`tan^(-1)""(m+n)/(m-n)`

C

`(pi)/(4)`

D

`tan^(-1)((1)/(2))`

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Show that 'tan ^(-1) (m/n)-tan ^(-1) ((m-n)/(m+n))=pi/4'

Prove that tan ^(-1) ((a-b)/(1+a b))+tan ^(-1)(( b-c)/(1+b c))+tan ^(-1) ((c-a)/(1+c a))=0

Knowledge Check

  • The value of tan^(-1)((sqrt(3))/(2))+tan^(-1)((1)/(sqrt(3))) is equal to a) tan^(-1)((5)/(sqrt(3))) b) tan^(-1)((2)/(sqrt(3))) c) tan^(-1)((1)/(2)) d) tan^(-1)((1)/(3sqrt(3)))

    A
    `tan^(-1)((5)/(sqrt(3)))`
    B
    `tan^(-1)((2)/(sqrt(3)))`
    C
    `tan^(-1)((1)/(2))`
    D
    `tan^(-1)((1)/(3sqrt(3)))`
  • 2"tan"^(-1)(1/(3))+"tan"^(-1)(1/(4)) is equal to

    A
    `"tan"^(-1)(16/(13))`
    B
    `"tan"^(-1)(17/(23))`
    C
    `pi/(4)`
    D
    0
  • If a_(1), a_(2), a_(3), ………., a_(n) are in AP with common difference 5 and if a_(i)a_(j) ne -1 for i, j = 1, 2, …….., n, then tan^(-1)((5)/(1+a_(1)a_(2))) + tan^(-1)((5)/(1+a_(2)a_(3))) +……..+ tan^(-1)((5)/(1+a_(n-1)a_(n))) is equal to a) tan^(-1)((5)/(1+a(n)a_(n-1))) b) tan^(-1)((5)/(1+a(n)a_(n))) c) tan^(-1)((5n-5)/(1+a(n)a_(n+1))) d) tan^(-1)((5n-5)/(1+a_(1)a_(n)))

    A
    `tan^(-1)((5)/(1+a(n)a_(n-1)))`
    B
    `tan^(-1)((5)/(1+a(n)a_(n)))`
    C
    `tan^(-1)((5n-5)/(1+a(n)a_(n+1)))`
    D
    `tan^(-1)((5n-5)/(1+a_(1)a_(n)))`
  • Similar Questions

    Explore conceptually related problems

    sum_(r=1)^(n) tan^(-1)(2^(r-1)/(1+2^(2r-1))) is equal to a) tan^(-1)(2^n) b) tan^(-1)(2)^n-pi/4 c) tan^(-1)(2^(n+1)) d) tan^(-1)(2^(n+1))-pi/4

    tan [ 3 tan^(-1) ((1)/(5)) - (pi)/(4) ] is equal to

    cos ^(-1) ((3+5 cos x )/(5+3 cos x )) is equal to : a) tan ^(-1) ((1)/(2) tan ""(x)/(2)) b) 2 tan ^(-1) (2 tan ""(x)/(2)) c) (1)/(2) tan ^(-1) (2 tan ""(x)/(2)) d) 2 tan ^(-1) ((1)/(2) tan ""(x)/(2))

    The value of tan^(-1) (2) + tan^(-1) (3) is equal to a) (3pi)/(4) b) (pi)/(4) c) (pi)/(3) d) tan^(-1) (6)

    int_(0)^(1)1/((x^(2)+16)(x^(2)+25))dx is equal to a) 1/(5)[1/(4)"tan"^(-1)(1/(4))-1/(5)"tan"^(-1)(1/(5))] b) 1/(9)[1/(4)"tan"^(-1)(1/(4))-1/(5)"tan"^(-1)(1/(5))] c) 1/(4)[1/(4)"tan"^(-1)(1/(4))-1/(5)"tan"^(-1)(1/(5))] d) 1/(9)[1/(5)"tan"^(-1)(1/(4))-1/(4)"tan"^(-1)(1/(5))]