Home
Class 12
MATHS
The parametric representation of a point...

The parametric representation of a point on the ellipse whose foci are `(3,0)` and `(-1,0)` and eccentricity `2//3`, is a)`(1+3costheta,sqrt(3)sintheta)` b)`(1+3costheta,5sintheta)` c)`(1+3costheta,1+sqrt(5)sintheta)` d)`(1+3costheta,sqrt(5)sintheta)`

A

`(1+3costheta,sqrt(3)sintheta)`

B

`(1+3costheta,5sintheta)`

C

`(1+3costheta,1+sqrt(5)sintheta)`

D

`(1+3costheta,sqrt(5)sintheta)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (1+costheta+sintheta)/(1-costheta+sintheta)=cot(theta/2)

Find dy/dx if x=a(theta-sintheta) , y=a(1-costheta)

Prove that |[x,sintheta, costheta],[-sintheta,-x,1],[costheta,1,x]| is independent of theta

If 3sintheta+5costheta=5 then show that 5sintheta-3costheta=+-3 .

Solve sqrt(3)costheta+sintheta=sqrt(2) .

Evaluate int((3sintheta-2)costheta)/(5-cos^2theta-4sintheta)d theta

Given that 1-costheta=2sin^2(theta/2) and 1+costheta=2cos^2(theta/2) prove that (1+sintheta-costheta)/(1+sintheta+costheta)=tan(theta/2)

Given x^2=cos2theta Show that tan^-1((costheta+sintheta)/(costheta-sintheta))=pi/4+theta

Find dy/dx if x=a(theta-sintheta) and y=a(1+costheta)