Home
Class 12
MATHS
If g(x)=int(0)^(x)cos^(4)tdt, then g(x+p...

If `g(x)=int_(0)^(x)cos^(4)tdt`, then `g(x+pi)` is equal to a)`g(x)+g(pi)` b)`g(x)-g(pi)` c)`g(x).g(pi)` d)`(g(x))/(g(pi))`

A

`g(x)+g(pi)`

B

`g(x)-g(pi)`

C

`g(x).g(pi)`

D

`(g(x))/(g(pi))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=ax+b and g(x)=cx+d , then f[g(x)]-g[f(x)] is equivalent to a) f(a)-g(c) b) f(c)+g(a) c) f(d)+g(b) d) f(d)-g(b)

If g(x) is the inverse of f(x) and f'(x) = (1)/( 1+ x^3) , then g'(x) is equal to a) g(x) b) 1+g(x) c) 1+ {g(x)}^3 d) (1)/( 1+ {g(x)}^3)

If f(x)=x+1 and g(x)=2x , then f{g(x)} is equal to

If intf(x)dx=g(x) , then intf^(-1)(x)dx is equal to a) g^(-1)(x) b) xf^(-1)(x)-g(f^(-1)(x)) c) xf^(-1)(x)-g^(-1)(x) d) f^(-1)(x)

If F(x) = [(cos x, - sin x, 0),(sin x, cos x, 0),(0,0,1)] and G(y) = [(cos y, 0, sin y),(0,1,0),(-sin y, 0, cos y)] then [F(x) G(y)]^(-1) is equal to a) F (-x) G(-y) b) G(-y) F(-x) c) F(x^(-1))G(y^(-1)) d) G(y^(-1))F(x^(-1))

Let f (x+y) =f (x) f(y) and f(x)=1 +sin (3x) g(x) , where g(x) is continuous , then f '(x) is : a)f(x) g(0) b)3g(0) c)f(x) cos (x) d)3f(x)g(0)

If f(x)=8x^3 and g(x)=x^(1/3) , find g(f(x)) and f(g(x))

If f(x) = sin x + cos x, g(x) = x^2 -1 , then g(f(x)) is invertible in the domain