Home
Class 12
MATHS
If f(x)=log(x^(3))(log(e)x^(2)), then f'...

If `f(x)=log_(x^(3))(log_(e)x^(2))`, then `f'(x)` at `x=e` is a)`(1)/(3e)(1-log_(e)2)` b)`(1)/(3e)(1+log_(e)2)` c)`(1)/(3e)(-1+log_(e)2)` d)`-(1)/(3e)(1+log_(e)2)`

A

`(1)/(3e)(1-log_(e)2)`

B

`(1)/(3e)(1+log_(e)2)`

C

`(1)/(3e)(-1+log_(e)2)`

D

`-(1)/(3e)(1+log_(e)2)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If the function f : [1, oo) rarr [1, oo) is defined by f(x) = 2^(x(x - 1)) , then f^(-1) (x) is a) ((1)/(2))^(x(x-1)) b) (1)/(2) (1 - sqrt(1 + 4 log_(2)x)) c) (1)/(2) sqrt(1 + 4 log_(2)x) d) (1)/(2) [1 + sqrt(1 + 4 log_(2)x)]

If f(x)=log[e^(x)((3-x)/(3+x))^(1//3)] then f'(1) is equal to a) (3)/(4) b) (2)/(3) c) (1)/(3) d) (1)/(2)

log_(e)3-(log_(e)9)/2^(2)+(log_(e)27)/3^(2)-(log_(e)81)/4^(2)+… is :

The sum of the series log_(9)3+log_(27)3-log_(81)3+log_(243)3- ....... is a) 1-log_(e)2 b) 1+log_(e)2 c) log_(e)2 d) log_(e)3