Home
Class 12
MATHS
The value of inte^(tan^(-1)x)((1+x+x^(2)...

The value of `inte^(tan^(-1)x)((1+x+x^(2)))/((1+x^(2)))dx` is

A

`tan^(-1)x+C`

B

`e^(tan^(-1)x)+2x+C`

C

`e^(tan^(-1)x)+C`

D

`xe^(tan^(-1)x)+C`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

int_1^x tan ^(-1) x d x

inte^(tan^(-1)x)(1+x+x^(2))*d(cot^(-1)x) is equal to

Evaluate int x^2tan^-1xdx

The value of int_(0)^(2) (x^(2))/((x^(3)+1)^(2)) dx is equal to

Evaluate int_0^1 (tan ^(-1) x)/(1+x^2 )d x

The value of int(x^(2)+1)/(x^(4)-x^(2)+1)dx is

int(x^(2)-1)/((x^(2)+1)sqrt(1+x^(4)))dx is equal to