Home
Class 12
MATHS
If I(n)=int(0)^(pi//4)tan^(n)xdx, then (...

If `I_(n)=int_(0)^(pi//4)tan^(n)xdx`, then `(1)/(I_(3)+I_(5))` is

A

`1//4`

B

`1//2`

C

`1//8`

D

4

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

I_(n)=int_(0)^(pi//4)tan^(n)xdx , then lim_(n to infty) n[I_(n)+I_(n-2)] equals :

If I_(n)=int(lnx)^(n)dx then I_(n)+nI_(n-1)

If I_(1)=int_(0)^(pi//2)(cos^(2)x)/(1+cos^(2)x)dx,I_(2)=int_(0)^(pi//2)(sin^(2)x)/(1+sin^(2)x)dx , I_(3)=int_(0)^(pi//2)(1+2cos^(2)x.sin^(2)x)/(4+2cos^(2)xsin^(2)x)dx , then

Let I_(n)=inttan^(n)xdx,(ngt1).I_(4)+I_(6)=atan^(5)x+bx^(5)+C , where C is a constant of integration, then the ordered pair (a,b) is equal to