Home
Class 12
MATHS
If f(x)=ax+b and g(x)=cx+d , then f[g(x)...

If f(x)=ax+b and g(x)=cx+d , then f[g(x)]-g[f(x)] is equivalent to a)`f(a)-g(c)` b)`f(c)+g(a)` c)`f(d)+g(b)` d)`f(d)-g(b)`

A

`f(a)-g(c)`

B

`f(c)+g(a)`

C

`f(d)+g(b)`

D

`f(d)-g(b)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x+1 and g(x)=2x , then f{g(x)} is equal to

If f(x)=8x^3 and g(x)=x^(1/3) , find g(f(x)) and f(g(x))

If f(x)=x^2-3x and g(x)=x+2 find (f+g)(x) , (f-g)(x) and (fg)(x)

If g(x) is the inverse of f(x) and f'(x) = (1)/( 1+ x^3) , then g'(x) is equal to a) g(x) b) 1+g(x) c) 1+ {g(x)}^3 d) (1)/( 1+ {g(x)}^3)

If f(x) = sin x + cos x, g(x) = x^2 -1 , then g(f(x)) is invertible in the domain

If intf(x)dx=g(x) , then intf^(-1)(x)dx is equal to a) g^(-1)(x) b) xf^(-1)(x)-g(f^(-1)(x)) c) xf^(-1)(x)-g^(-1)(x) d) f^(-1)(x)

Let f (x+y) =f (x) f(y) and f(x)=1 +sin (3x) g(x) , where g(x) is continuous , then f '(x) is : a)f(x) g(0) b)3g(0) c)f(x) cos (x) d)3f(x)g(0)

If f:RtoR and g:RtoR defined by f(x)=x^2 and g(x)=x+1 , then gof(x) is

If f'(4) = 5, g'(4) = 12, f(4) g(4) = 2 and g(4) = 6, then ((f)/(g)) (4) is a) (5)/(36) b) (11)/(18) c) (23)/(36) d) (13)/(18)