Home
Class 12
MATHS
If f(x)=log((1+x)/(1-x)),-1ltxlt1 then f...

If `f(x)=log((1+x)/(1-x)),-1ltxlt1` then `f((3x+x^(3))/(1+3x^(2)))-f((2x)/(1+x^(2)))` is

A

`[f(x)]^(3)`

B

`[f(x)]^(2)`

C

`-f(x)`

D

`f(x)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = log [(1+x)/(1-x)] , the prove that f[(2x)/(1+x^2)] =2f(x)

If f(x)=int_(1)^(x)(logt)/(1+t+t^(2))dt,AAxge1 then f(x) a) f(1/x) b) f((1)/(x^(2))) c) f(x^(2)) d) -f(1/x)

If f(x) = (sin^(-1)x)/(sqrt(1-x^(2))) , then the value of (1-x^(2))f'(x) - x f(x) is

If f (x) = (x +2)/( 3x -1) , then f {f (x) } is

If f(x) = |((1+x)^(2),(1+2x)^(b),1),(1,(1+x)^(a),(1+2x)^(a)),((1+2x)^(b),1,(1+x)^(b))| a ,b being positive integers, then a)Constant term of f(x) is 1 b)Coefficient of x in f(x) is 0 c)Constant term is f(x) is a - b d)Coefficient of x in f(x) is - 1

If f(x)=(1)/(x^(2)+4x+4)-(4)/(x^(4)+4x^(3)+4x^(2))+(4)/(x^(3)+2x^(2)) the f (1/2) is equal to

If f(x)=log[e^(x)((3-x)/(3+x))^(1//3)] then f'(1) is equal to a) (3)/(4) b) (2)/(3) c) (1)/(3) d) (1)/(2)

If d/(dx) {f(x)}=1/(1+x^2) then d/(dx){f(x^3)} is a) (3x)/(1+x^3) b) (3x^2)/(1+x^6) c) (-6x^5)/(1+x^6)^2 d) (-6x^5)/(1+x^6)