Home
Class 12
MATHS
If the line segment joining the points ...

If the line segment joining the points P (a,b) and Q(c,d) subtends an angle `theta` at the origin , then the value of `costheta` is a)`(ab+cd)/(sqrt(a^(2)+b^(2))sqrt(c^(2)+d^(2)))` b)`(ab)/(sqrt(a^(2)+b^(2)))+(bd)/(sqrt(c^(2)+d^(2)))` c)`(ac+bd)/(sqrt(a^(2)+b^(2))sqrt(c^(2)+d^(2)))` d)`(ac-bd)/(sqrt(a^(2)+b^(2))sqrt(c^(2)+d^(2)))`

A

`(ab+cd)/(sqrt(a^(2)+b^(2))sqrt(c^(2)+d^(2)))`

B

`(ab)/(sqrt(a^(2)+b^(2)))+(bd)/(sqrt(c^(2)+d^(2)))`

C

`(ac+bd)/(sqrt(a^(2)+b^(2))sqrt(c^(2)+d^(2)))`

D

`(ac-bd)/(sqrt(a^(2)+b^(2))sqrt(c^(2)+d^(2)))`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If the point (a,b) on the curve y= sqrt(x) is close to the point (1,0) , then the value of ab is a) 1/2 b) (sqrt2)/(2) c) 1/4 d) (sqrt2)/(4)

If AM and GM of x and y are in the ratio p: q, then x: y is : a) p - sqrt(p^(2)+ q^(2)) : p +sqrt (p^(2)+ q^(2)) b) p +sqrt(p^(2) - q^ (2) ) : p- sqrt(p^(2)-q^(2)) c) p : q d) p + sqrt(p^(2) + q^(2)) : p-sqrt(p^(2) + q^(2))

The value of "sin"(31)/(3)pi is a) (sqrt3)/(2) b) (1)/(sqrt2) c) (-sqrt3)/(2) d) (-1)/(sqrt2)

The value of "tan"15^(@)+"tan"75^(@) is a) 2sqrt(3) b)2 c) 2-sqrt(3) d)4

The minimum values of sin x + cos x is a) sqrt2 b) -sqrt2 c) (1)/(sqrt2) d) - (1)/(sqrt2)

If a and b are positive numbers such that a gt b , then the minimum value of a sec theta- b tan theta (0 lt theta lt pi/2) is a) 1/sqrt(a^2-b^2) b) 1/sqrt(a^2+b^2) c) sqrt(a^2+b^2) d) sqrt(a^2-b^2)

inttan(sin^(-1)x)dx is equal to a) (1)/(sqrt(1-x^(2)))+c b) sqrt(1-x^(2))+c c) (-x)/(sqrt(1-x^(2)))+c d) -sqrt(1-x^(2))+c

If tan^(-1)2x+tan^(-1)3x=(pi)/(2) , then the value of x is equal to a) (1)/(sqrt(6)) b) (1)/(6) c) (1)/(sqrt(3)) d) (1)/(sqrt(2))

If a cos theta+b sin theta=c , show that asin theta-bcos theta=pm sqrt((a)^(2)+(b)^(2)-(c)^(2))

If omega is a complex cube root of unity, then the value of sin{(omega^(10)+omega^(23))pi-(pi)/(6)} is a) (1)/(sqrt(2)) b) (sqrt(3))/(2) c) -(1)/(sqrt(2)) d) (1)/(2)