Home
Class 12
MATHS
If f(1)=1,f'(1)=2 , then lim(xto1)(sqrt(...

If `f(1)=1,f'(1)=2` , then `lim_(xto1)(sqrt(f(x))-1)/(sqrt(x)-1)` is a)2 b)4 c)1 d)`1/2`

A

2

B

4

C

1

D

`1//2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr oo) sqrt(x^(2)+1)- sqrt(x^(2)-1) = a)-1 b)1 c)0 d)2

lim_(xto-oo)(2x-1)/(sqrt(x^(2)+2x+1)) is equal to a)2 b)-2 c)1 d)-1

lim_(x rarr 0) (sqrt(1 + 2x) - 1)/(x) = a)0 b)-1 c) (1)/(2) d)1

Evaluate lim_(x rarr 1) (sqrt(x^(2)-1)+sqrt(x-1))/(sqrt(x^(2)-1))

The derivative of f(tanx) wrt g(secx) at x=pi//4 , where f'(1)=2 and g'(sqrt(2))=4 is a) (1)/(sqrt(2)) b) sqrt(2) c)1 d)2

If f'(x)=(1)/(-x+sqrt(x^(2)+1)) and f(0)=-(1+sqrt(2))/(2) then f(1) is equal to a) -log(sqrt(2)+1) b)1 c) 1+sqrt(2) d) 1/2log(1+sqrt(2))

f(x) = |(cosx,x,1),(2 sin x, x^(2),2x),(tan x, x ,1)| . Then value of lim_(xto0)(f'(x))/(x) is equal to a)1 b)-1 c)0 d)None of these