Home
Class 12
MATHS
inttan(sin^(-1)x)dx is equal to a)(1)/(s...

`inttan(sin^(-1)x)dx` is equal to a)`(1)/(sqrt(1-x^(2)))+c` b)`sqrt(1-x^(2))+c` c)`(-x)/(sqrt(1-x^(2)))+c` d)`-sqrt(1-x^(2))+c`

A

`(1)/(sqrt(1-x^(2)))+c`

B

`sqrt(1-x^(2))+c`

C

`(-x)/(sqrt(1-x^(2)))+c`

D

`-sqrt(1-x^(2))+c`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = sin ^(-1) (2x sqrt (1- x ^(2))), - (1)/( sqrt2) le x le (1)/( sqrt2) , then (dy)/(dx) is equal to a) (x)/( sqrt (1- x ^(2))) b) (1)/( sqrt(1- x ^(2))) c) (2)/( sqrt (1 - x ^(2))) d) (2x)/( sqrt (1- x ^(2)))

If - pi/2 lt sin^-1 x lt pi/2 then tan (sin^-1 x) is equal to a) x/(1-x^2) b) x/(1+x^2) c) x/sqrt(1-x^2) d) 1/sqrt(1-x^2)

int sqrt((1-x)/(1+x))dx is equal to a) sin^(-1)x + sqrt(1 - x^(2)) + C b) sin^(-1) x - 2 sqrt(1 - x^(2)) + C c) 2 sin^(-1) x - sqrt(1 - x^(2)) + C d) sin^(-1)x - sqrt(1 - x^(2)) + C

If x takes negative permissible values , then sin^(-1) x= a) cos^(-1)sqrt(1-x^2) b) -cos^(-1)sqrt(1-x^2) c) cos^(-1)sqrt(x^2-1) d) pi-cos^(-1)sqrt(1-x^2)

Prove that tan ^(-1) ((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))=pi/4+1/2 cos ^(-1) x^2

If 0lt xlt1 , then sqrt(1+x^2)[{cos (cot^(-1)x)+sin(cot^(-1)x)}^(2)-1]^(1//2) is equal to a) x/sqrt(1+x^2) b)x c) xsqrt(1+x^2) d) sqrt(1+x^2)

int(log (x+sqrt(1+x^(2))))/(sqrt(1+x^(2)) )dx is equal to

sin 765^(@) is equal to a)1 b)0 c) sqrt(3)//2 d) 1//sqrt2

The value of cos [ tan^-1 {sin (cot^-1 (x))}] is a) sqrt((x^2+1)/(x^2-1)) b) sqrt((1-x^2)/(x^2+2)) c) sqrt((1-x^2)/(1+x^2)) d) sqrt((x^2+1)/(x^2+2))