Home
Class 12
MATHS
inte^(3logx)(x^(4)+1)^(-1)dx is equal t...

`inte^(3logx)(x^(4)+1)^(-1)dx` is equal to A)`e^(3logx)+c` B)`(1)/(4)log(x^(4)+1)+c` C)`(1)/(2)log(x^(4)+1)+c` D)`(x^(4))/(x^(4)+1)+c`

A

`e^(3logx)+c`

B

`(1)/(4)log(x^(4)+1)+c`

C

`(1)/(2)log(x^(4)+1)+c`

D

`(x^(4))/(x^(4)+1)+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int{(logx-1)/(1+(logx)^(2))}^(2)dx is equal to a) (logx)/((logx)^(2)+1)+c b) (x)/(x^(2)+1)+c c) (xe^(x))/(1+x^(2))+c d) (x)/((logx)^(2)+1)+c

int (x^4 -1)/(x^2 (x^4+x^2+1)^(1/2)) dx is equal to

int (log x)/(x^(2))dx is equal to a) (log x)/(x) + (1)/(x^(2)) +C b) -(log x)/(x) + (2)/(x) + C c) -(log x)/(x) - (1)/(2x) + C d) -(log x)/(x) - (1)/(x) + C

int(1+logx)/((1+xlogx)^(2))dx is equal to a) (1)/(1+xlog|x|)+C b) (1)/(1+log|x|)+C c) (-1)/(1+xlog|x|)+C d) log|(1)/(1+log|x|)|+C

int (1)/( x ^(2)( x ^(4) + 1 )^((3)/(4))) dx is equal to a) -((x^4+1)/(x^4))^(1/4)+c b) -((x^4+1)/(2x))^(1/4)+c c) -((x^4+1)/(x))^(1/4)+c d) -((x^4+1)/(x^2))^(1/4)+c

int(x^(3)sin[tan^(-1)(x^(4))])/(1+x^(8))dx is equal to : a) 1/4cos[tan^(-1)(x^(4))]+c b) 1/4sin[tan^(-1)(x^(4))]+c c) -1/4cos[tan^(-1)(x^(4))]+c d) 1/4sec^(-1)[tan^(-1)(x^(4))]+c

If I=inte^(-x)log(e^(x)+1)dx , then I equals a) x+(e^(-x)+1)log(e^(x)+1)+C b) x+(e^(x)+1)log(e^(x)+1)+C c) x-(e^(-x)+1)log(e^(x)+1)+C d)None of these

int(e^(x))/(x)(xlogx+1)dx is equal to a) (e^(x))/(x)+C b) xe^(x)log|x|+C c) e^(x)log|x|+C d) x(e^(x)+log|x|)+C

int (3^x)/( sqrt( 1- 9^x )) dx is equal to a) (log 3) sin^(-1) (3^x) + C b) (1)/(3) sin^(-1) (3^x) + C c) ((1)/(log 3)) sin^(-1) (3^x) + C d) (1)/(9) sin^(-1) (3^x) +C

int (xe ^(x))/( (1 + x )^(2)) dx is equal to a) ( - e ^(x))/( x +1) + C b) (e ^(x))/( x +1 ) + C c) (xe ^(x))/( x +1)+ C d) (- xe ^(x))/( x +1 ) +C