Home
Class 12
MATHS
If int(0)^(pi)xf(sinx)dx=Aint(0)^(pi//2)...

If `int_(0)^(pi)xf(sinx)dx=Aint_(0)^(pi//2)f(sinx)dx` , then A is equal to a)0 b)`pi` c)`(pi)/(4)` d)`2pi`

A

0

B

`pi`

C

`(pi)/(4)`

D

`2pi`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0) ^(pi//2) (dx)/( 1 + tan^(3) x) is equal to a)1 b) pi c) pi/2 d) pi/4

If A=int_(0)^(pi)(cosx)/(x+2)^(2)dx , then int_(0)^(pi//2)(sin2x)/(x+1)dx is equal to

int_(0)^(sqrt(pi)//2) 2x^(3)"sin"(x^(2))dx is equal to

int_(0)^(pi)abs(cosx)dx is equal to :

int_(0)^(pi//2) (sin 2x )/( 1 + 2 cos^(2) x) dx is equal to

int_0^(pi/2)frac(sinx)(sinx+cosx)dx

int_(0)^(1)(tan^(-1)x)/(x)dx is equal to a) int_(0)^(pi/2)(sinx)/(x)dx b) int_(0)^(pi/2)(x)/(sinx)dx c) 1/2int_(0)^(pi/2)(sinx)/(x)dx d) 1/2int_(0)^(pi/2)(x)/(sinx)dx

Evaluate int_(0)^(16pi//3)|sinx|dx .