Home
Class 12
MATHS
The differential equation representing ...

The differential equation representing the family of curves `y=xe^(cx)` (c is a constant ) is a)`(dy)/(dx)=(y)/(x)(1-"log"(y)/(x))`b)`(dy)/(dx)=(y)/(x)"log"((y)/(x))+1` c)`(dy)/(dx)=(y)/(x)(1+"log"(y)/(x))` d)`(dy)/(dx)+1=(y)/(x)"log"((y)/(x))`

A

`(dy)/(dx)=(y)/(x)(1-"log"(y)/(x))`

B

`(dy)/(dx)=(y)/(x)"log"((y)/(x))+1`

C

`(dy)/(dx)=(y)/(x)(1+"log"(y)/(x))`

D

`(dy)/(dx)+1=(y)/(x)"log"((y)/(x))`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The differential equation representing the family of curves given by y=ae^(-3x)+b , where a and b are arbitrary constants, is a) (d^(2)y)/(dx^(2))+3(dy)/(dx)-2y=0 b) (d^(2)y)/(dx^(2))-3(dy)/(dx)=0 c) (d^(2)y)/(dx^(2))-3(dy)/(dx)-2y=0 d) (d^(2)y)/(dx^(2))+3(dy)/(dx)=0

If sec((x-y)/(x+y))=a,"then "(dy)/(dx) is a) (y)/(x) b) -(y)/(x) c) (x)/(y) d) -(x)/(y)

The solution of the differential equation (dy)/(dx)=(y)/(x)+(phi((y)/(x)))/(phi'((y)/(x))) is

sqrt ((y)/(x)) + sqrt ((x)/(y))=1, then (dy)/(dx) equals

x (dy)/(dx)-y+x sin (y/x)=0