Home
Class 12
MATHS
The solution of (dy)/(dx)=1+y+y^(2)+x+x...

The solution of `(dy)/(dx)=1+y+y^(2)+x+xy+xy^(2)` is

A

`"tan"^(-1)((2y+1)/(sqrt(3)))=x+xy+xy^(2)` is

B

`4tan^(-1)((2y+1)/(sqrt(3)))=(sqrt(3))/(2)(2x+x^(2))+c`

C

`sqrt(3)tan^(-1)((3y+1)/(3))=4(1+x+x^(2))+c`

D

`4tan^(-1)((2y+1)/(sqrt(3)))=sqrt(3)(2x+x^(2))+c`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The general solution of (dy)/(dx)=(2x-y)/(x+2y) is given by

Solution of (dy)/(dx) + 2y tan x = sin x is

find general solution (dy)/(dx)+3 y =e^(-2 x)

The solution of the differential equation x (dy)/(dx) + y = (1)/(x^(2)) at (1, 2) is a) x^(2)y + 1 = 3x b) x^(2)y + 1 = 0 c) xy + 1 = 3x d) x^(2) (y + 1) = 3x

Find (dy)/(dx) if xy+y^2=tanx+y