Home
Class 12
MATHS
If alpha, beta , gamma are the cube root...

If `alpha, beta , gamma` are the cube roots of unity, then the value of the determinant `|{:(e^a,e^(2a),(e^(3a)-1)), (e^beta,e^(2 beta), (e^(2 beta)-1)), (e^gamma,e^(2gamma), (e^(3 gamma)-1)):}|` is equal to

A

-2

B

-1

C

0

D

1

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta, gamma are the roots of the equation x^(3)+4x+1=0 , then find the value of (alpha+beta)^(-1) +(beta +gamma)^(-1) + (gamma+ alpha)^(-1)

The value of the integral int_(0)^(log5)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx is

If alpha,beta,gamma are roots of the equation x^(2) (px+q)=r(x+1), then the value of determinant |(1+alpha,1,1),(1,1+beta,1),(1,1,1+gamma)| is a) alpha beta gamma b) 1+(1)/(alpha)+(1)/(beta)+(1)/(gamma) c)0 d)None of these

If alpha, beta, gamma are roots of the equation x^(3)+px^(2)+qx+r= 0 , then prove that (1-alpha^(2))(1- beta^(2)) (1- gamma^(2))=(1+q)^(2)-(p+r)^(2)

The value of int_(e)^(e^(3))(1)/(x)dx is equal to

If alpha+beta =pi//2andbeta+gamma=alpha , then tanalpha equals