Home
Class 12
MATHS
IF 1, omega , omega^2 are the cube roots...

IF `1, omega , omega^2` are the cube roots of unity and if
`[{:(1+omega,2 omega),(-2 omega,-b):}]+[{:(a,-omega),(3 omega,2):}]=[{:(0, omega),(omega,1):}]` then `a^2+b^2` is equal to

A

`1+ omega^2`

B

`omega^2-1`

C

`1+omega`

D

`(1+omega)^2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If omega is an imaginary cube root of unity, then (1 + omega - omega^(2))^(7) is equal to

Let omega ne 1 be cube root of unity and (1 + omega ) ^(7)= a + omega. Then the value of a is

If omega is a complex cube root of unity, show that [[1 , omega, omega^2], [ omega, omega^2, 1],[ omega^2, 1, omega]] [[1],[ omega],[ omega^2]]=[[0],[ 0],[ 0]]

If 1, omega_(1), omega_(2),…omega_(6) " are " 7^(th) roots of unity then Im (omega_(1) + omega_(2)+ omega_(4)) is equal to

If omega is a cube root of unity, then find (3+5omega+3omega^(2))^(2)+ (3 +3omega+5omega^(2))^(2)

If omega be the complex cube root of unity and matrix H=[(omega,0),(0,omega)] , then H^(70) is equal to a)0 b)-H c)H d) H^(2)

Without expanding at any stage, prove that the value of the following determinant is zero. |(1,omega,omega^(2)),(omega,omega^(2),1),(omega^(2),1,omega)| , where omega is cube root of unity

If omega ne 1 and omega^3=1 then (a omega+b+c omega^2)/(a omega^2+b omega+c)+(a omega^2+b+c omega)/(a+b omega+ c omega^2) is equal to a)2 b) omega c) 2 omega d) 2 omega^2

The value of the expression 1.(2- omega)(2- omega^(2)) + 2.(3-omega) (3-omega^(2)) + …+ (n-1)(n- omega)(n- omega^(2)) , where omega is an imaginary cube root of unity is