Home
Class 12
MATHS
The value of cos [ tan^-1 {sin (cot^-1 (...

The value of `cos [ tan^-1 {sin (cot^-1 (x))}]` is a)`sqrt((x^2+1)/(x^2-1))` b)`sqrt((1-x^2)/(x^2+2))` c)`sqrt((1-x^2)/(1+x^2))` d)`sqrt((x^2+1)/(x^2+2))`

A

`sqrt((x^2+1)/(x^2-1))`

B

`sqrt((1-x^2)/(x^2+2))`

C

`sqrt((1-x^2)/(1+x^2))`

D

`sqrt((x^2+1)/(x^2+2))`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that costan^(-1)sin cot^(-1)x=sqrt((x^2+1)/(x^2+2))

inttan(sin^(-1)x)dx is equal to a) (1)/(sqrt(1-x^(2)))+c b) sqrt(1-x^(2))+c c) (-x)/(sqrt(1-x^(2)))+c d) -sqrt(1-x^(2))+c

The derivative of tan^-1 ((2x)/(1-x^2)) with respect to cos^-1 sqrt(1-x^2) is a) (sqrt(1-x^2))/(1+x^2) b) 1/sqrt(1-x^2) c) 2/(1+x^2) d) (2sqrt(1-x^2))/(1+x^2)

If 1 + cos x =k, where x is acute, then sin "" (x)/(2) is : a) sqrt ((1- k )/( 2)) b) sqrt ( 2- k) c) sqrt ((2 + k)/( 2)) d) sqrt ((2- k )/(2))

Prove that tan ^(-1) ((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))=pi/4+1/2 cos ^(-1) x^2

If - pi/2 lt sin^-1 x lt pi/2 then tan (sin^-1 x) is equal to a) x/(1-x^2) b) x/(1+x^2) c) x/sqrt(1-x^2) d) 1/sqrt(1-x^2)

The minimum values of sin x + cos x is a) sqrt2 b) -sqrt2 c) (1)/(sqrt2) d) - (1)/(sqrt2)

Prove that sin[2tan^(-1){sqrt((1-x)/(1+x))}]=sqrt(1-x^2)

If f: [1,oo) rarr [2, oo) is given by f(x) = x+1/x , then f^(-1) (x) equals a) ((x+sqrt(x^2-4)))/(2) b) x/(1+x^2) c) ((x-sqrt(x^2-4)))/(2) d) 1+sqrt(x^2-4)