Home
Class 12
MATHS
If - pi/2 lt sin^-1 x lt pi/2 then tan (...

If `- pi/2 lt sin^-1 x lt pi/2` then `tan (sin^-1 x)` is equal to a)`x/(1-x^2)` b)`x/(1+x^2)` c)`x/sqrt(1-x^2)` d)`1/sqrt(1-x^2)`

A

`x/(1-x^2)`

B

`x/(1+x^2)`

C

`x/sqrt(1-x^2)`

D

`1/sqrt(1-x^2)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

inttan(sin^(-1)x)dx is equal to a) (1)/(sqrt(1-x^(2)))+c b) sqrt(1-x^(2))+c c) (-x)/(sqrt(1-x^(2)))+c d) -sqrt(1-x^(2))+c

sin(tan^(-1)x),|x| lt1 is equal to

If 2 sin^(-1) x - cos^(-1) x = (pi)/(2) , then x is equal to

If 0lt xlt1 , then sqrt(1+x^2)[{cos (cot^(-1)x)+sin(cot^(-1)x)}^(2)-1]^(1//2) is equal to a) x/sqrt(1+x^2) b)x c) xsqrt(1+x^2) d) sqrt(1+x^2)

If y = sin ^(-1) (2x sqrt (1- x ^(2))), - (1)/( sqrt2) le x le (1)/( sqrt2) , then (dy)/(dx) is equal to a) (x)/( sqrt (1- x ^(2))) b) (1)/( sqrt(1- x ^(2))) c) (2)/( sqrt (1 - x ^(2))) d) (2x)/( sqrt (1- x ^(2)))

If f: [1,oo) rarr [2, oo) is given by f(x) = x+1/x , then f^(-1) (x) equals a) ((x+sqrt(x^2-4)))/(2) b) x/(1+x^2) c) ((x-sqrt(x^2-4)))/(2) d) 1+sqrt(x^2-4)

If tan^(-1)2x+tan^(-1)3x=(pi)/(2) , then the value of x is equal to a) (1)/(sqrt(6)) b) (1)/(6) c) (1)/(sqrt(3)) d) (1)/(sqrt(2))

The derivative of tan^-1 ((2x)/(1-x^2)) with respect to cos^-1 sqrt(1-x^2) is a) (sqrt(1-x^2))/(1+x^2) b) 1/sqrt(1-x^2) c) 2/(1+x^2) d) (2sqrt(1-x^2))/(1+x^2)

The value of cos [ tan^-1 {sin (cot^-1 (x))}] is a) sqrt((x^2+1)/(x^2-1)) b) sqrt((1-x^2)/(x^2+2)) c) sqrt((1-x^2)/(1+x^2)) d) sqrt((x^2+1)/(x^2+2))

Prove that tan ^(-1) ((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))=pi/4+1/2 cos ^(-1) x^2