Home
Class 12
MATHS
The vector form of the sphere 2(x^2+y^2+...

The vector form of the sphere `2(x^2+y^2+z^2)-4x+6y+8z-5=0` is
a)`vecr. [vec r- (2 hat i+hatj+hatk)]=2/5`
b)`vecr. [vec r- (2 hat i-3hatj-hatk)]=1/2`
c)`vecr. [vec r- (2 hat i+3hatj+hatk)]=5/2`
d)`vecr. [vec r- (2 hat i-3hatj-hatk)]=5/2`

A

`vecr. [vec r- (2 hat i+hatj+hatk)]=2/5`

B

`vecr. [vec r- (2 hat i-3hatj-hatk)]=1/2`

C

`vecr. [vec r- (2 hat i+3hatj+hatk)]=5/2`

D

`vecr. [vec r- (2 hat i-3hatj-hatk)]=5/2`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

A plane is at a distance of 5 units from the origin and perpendicular to the vector 2hat(i) + hat(j) + 2hat(k) . The equation of the plane is a) vec(r ).(2hat(i) + hat(j) -2hat(k))=15 b) vec(r ).(2hat(i)+ hat(j)-hat(k))=15 c) vec(r ).(2hat(i) + hat(j)+ 2hat(k))=15 d) vec(r ).(hat(i) + hat(j) + 2hat(k))=15

Find the vector equation of the line passing through (1,2,3) and parallel to the planes vecr .(hati-hatj+2 hatk)=5 and vecr .(3 hati+hatj+hatk)=6

The equation of the plane perpendicular to the line (x-1)/(1)=(y-2)/(-1)=(z+1)/(2) and passing through the point (2,3,1) is a) vecr*(hati+hatj+2hatk)=1 b) vecr*(hati-hatj+2hatk)=1 c) vecr*(hati-hatj+2hatk)=7 d) vecr*(hati+hatj-2hatk)=10

Find the position vector of the point where the line vec r = hati - hatj +hatk + t (hati + hatj -hatk ) meets the plane vecr. (hati + hatj + hatk ) =5

Find the angle between the planes whose vector equations are vecr.(2hati+2hatj-3hatk)=5 and vecr.(3hati-3hatj+5hatk)=3

Find the shortest distance between the lines vecr =(2hati-hatj-hatk)+lambda(3hati-5hatj+2hatk) and vecr =(hati+hatj+hatk)+mu(hati-hatj+hatk)