Home
Class 12
MATHS
IF y= log2 log2 (x) then (dy)/(dx) is e...

IF `y= log_2 log_2 (x)` then ` (dy)/(dx)` is equal to

A

`(log_2 e)/(log_e x)`

B

`(log_2 e)/ (x log_x 2)`

C

`(log_2 x)/(log_e 2)`

D

`(log_2 e)/(xlog_e x)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

y = log _(a) x + log _(x) a + log _(x) x + log _(a) a, then (dy)/(dx) is equal to :

If y^(x)=2^(x) , then (dy)/(dx) is equal to

If y=(cosx)^(2x) , then (dy)/(dx) is equal to

If y = e ^((1//2) log (1 + tan ^(2) x), ) then (dy)/(dx) is equal to :

If x^(y) = e^(2(x-y)) , then (dy)/(dx) is equal to

intx^(x)ln(ex)dx is equal to

If f '(x) = sin (log x) and y = f ((2x + 3)/(3 - 2x )), then (dy)/(dx) at x =1 is equal to : a) 6 sin log (5) b) 5 sin log (6) c) 12 sin log (5) d) 5 sin log (12)

If y = cot^(-1) ("tan" (x)/(2)) , then (dy)/(dx) is equal to

If int (f(x))/(log cos x) dx = - log(log cos x) + C , then f(x) is equal to a)tan x b) -sin x c) -cos x d) -tan x