Home
Class 12
MATHS
The derivative of tan^-1 ((2x)/(1-x^2)) ...

The derivative of `tan^-1 ((2x)/(1-x^2))` with respect to `cos^-1 sqrt(1-x^2)` is a)`(sqrt(1-x^2))/(1+x^2)` b)`1/sqrt(1-x^2)` c)`2/(1+x^2)` d)`(2sqrt(1-x^2))/(1+x^2)`

A

`(sqrt(1-x^2))/(1+x^2)`

B

`1/sqrt(1-x^2)`

C

`2/(1+x^2)`

D

`(2sqrt(1-x^2))/(1+x^2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

int(log(x+sqrt(1+x^(2))))/(sqrt(1+x^(2)))dx=

The value of cos [ tan^-1 {sin (cot^-1 (x))}] is a) sqrt((x^2+1)/(x^2-1)) b) sqrt((1-x^2)/(x^2+2)) c) sqrt((1-x^2)/(1+x^2)) d) sqrt((x^2+1)/(x^2+2))

Prove that tan ^(-1) ((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))=pi/4+1/2 cos ^(-1) x^2

Differentiate sin^(-1) ( 2 x sqrt( 1 - x^(2))) with respect to x if (1)/( sqrt(2)) lt x lt 1

Differentiate sin^(-1) ( 2 x sqrt( 1 - x^(2))) with respect to x if - (1)/( sqrt(2)) lt x lt (1)/( sqrt(2))

inttan(sin^(-1)x)dx is equal to a) (1)/(sqrt(1-x^(2)))+c b) sqrt(1-x^(2))+c c) (-x)/(sqrt(1-x^(2)))+c d) -sqrt(1-x^(2))+c

If - pi/2 lt sin^-1 x lt pi/2 then tan (sin^-1 x) is equal to a) x/(1-x^2) b) x/(1+x^2) c) x/sqrt(1-x^2) d) 1/sqrt(1-x^2)

If y=sin^(-1)x/sqrt(1-x^2) prove that (1-x^2)y_1-xy=1

The derivative of f(tanx) wrt g(secx) at x=pi//4 , where f'(1)=2 and g'(sqrt(2))=4 is a) (1)/(sqrt(2)) b) sqrt(2) c)1 d)2