Home
Class 12
MATHS
int(e^(6 log e x)-e^(5 loge x))/(e^(4 lo...

`int(e^(6 log _e x)-e^(5 log_e x))/(e^(4 log _e x)-e^(3 log _e x))dx` is equal to a)`x^3/3+c` b)`x^2/2+c` c)`x^2/3+c` d)`(-x^3)/3+c`

A

`x^3/3+c`

B

`x^2/2+c`

C

`x^2/3+c`

D

`(-x^3)/3+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int 1/x(log_(ex)e)dx is equal to

int e^(x log a ) e^(x) dx is equal to :

The value of int_1^e 10^(log_e x) dx is equal to

int (4e^(x) + 6e^(-x))/(9e^(x) - 4e^(-x))dx is equal to

int(4e^(x))/(2e^(x)-5e^(-x))dx is equal to

The value of int_(e)^(e^(3))(1)/(x)dx is equal to

lim""_(xto3)(e^(x-3)-x+1)/(x^(2)-log(x-2)) is equal to

If y=(logx)^(2) , then (dy)/(dx) at x=e is equal to a)2 b) e/2 c)e d) 2/e

int_(-1)^(1)(e^(x^(3)) + e^(-x^(3)))(e^(x) - e^(-x)) dx is equal to

log_(e)3-(log_(e)9)/2^(2)+(log_(e)27)/3^(2)-(log_(e)81)/4^(2)+… is :