Home
Class 12
MATHS
The value of int1^e 10^(loge x) dx is eq...

The value of `int_1^e 10^(log_e x) dx` is equal to

A

`10 log_e (10 e)`

B

`(10e-1)/(log_e 10 e)`

C

`(10 e)/(log_e 10 e)`

D

`(10 e) log_e (10 e)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int 1/x(log_(ex)e)dx is equal to

int e^(x log a ) e^(x) dx is equal to :

The value of int_(e)^(e^(3))(1)/(x)dx is equal to

The value of the integeral int _(1) ^(e) (1 + log x )/( 3x) dx is equal to

int(e^(6 log _e x)-e^(5 log_e x))/(e^(4 log _e x)-e^(3 log _e x))dx is equal to a) x^3/3+c b) x^2/2+c c) x^2/3+c d) (-x^3)/3+c

int sqrt(e^(x)-1) dx is equal to :

The value of int_(0)^(1)sqrt(x)e^(sqrt(x))dx is equal to a) ((e-2))/(2) b) 2(e-2) c) 2e-1 d) 2(e-1)

The value of int _(0) ^(1) (dx)/(e ^(x) + e ) is equal to a) (1)/(e) log ((1 + e )/(2)) b) log ((1 + e )/(2)) c) 1/e log (1 + e) d) log ((2)/(1 + e ))

int(1+x)/(x+e^(-x))dx is equal to