Home
Class 12
MATHS
The value of int(e^(-1))^e (dt)/(t(1+t))...

The value of `int_(e^(-1))^e (dt)/(t(1+t))` is equal to

A

0

B

`log (e/(1+e))`

C

`log (1/(1+e))`

D

1

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int _(0) ^(1) (dx)/(e ^(x) + e ) is equal to a) (1)/(e) log ((1 + e )/(2)) b) log ((1 + e )/(2)) c) 1/e log (1 + e) d) log ((2)/(1 + e ))

The value of int_(0)^(1)sqrt(x)e^(sqrt(x))dx is equal to a) ((e-2))/(2) b) 2(e-2) c) 2e-1 d) 2(e-1)

The value of int_(e)^(e^(3))(1)/(x)dx is equal to

If int_(0)^(1)(e^(t))/(1+t)dt=a then int_(0)^(1)(e^(t))/((1+t)^(2))dt is equal to

If int_(0)^(1)(e^(t)dt)/(t+1)=a , then int_(b-1)^(b)(e^(-t)dt)/(t-b-1) is equal to a) ae^(-b) b) -ae^(-b) c) be^(-b) d)None of these

int((1+x)e^(x))/("cot" (xe^(x)))dx is equal to

int(dx)/(sqrt(1-e^(2x))) is equal to

The value of int_1^e 10^(log_e x) dx is equal to

int e^x ((1-x)/(1+x^2))^2 dx is equal to