Home
Class 12
MATHS
The solution of the differential equatio...

The solution of the differential equation `(dy)/(dx)= 1/(x+y^2)` is

A

`y=-x^2-2x-2+ce^x`

B

`y=x^2+2x+2-ce^x`

C

`x=-y^2-2y+2-ce^y`

D

`x=-y^2-2y-2+ce^y`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of the differential equation (dy)/(dx) = e ^(x) +1 is

The solution of the differential equation x(dy)/(dx)=(y)/(1+logx) is

The general solution of the differential equation (dy)/(dx)=e^(x+y) is

The solution of the differential equation (dy)/(dx) = (y ^(2))/(x) passing through the point (1,-1) is

The solution of the differential equation x (dy)/(dx) + y = (1)/(x^(2)) at (1, 2) is a) x^(2)y + 1 = 3x b) x^(2)y + 1 = 0 c) xy + 1 = 3x d) x^(2) (y + 1) = 3x

Find the general solution of the differential equation (dy)/(dx) = (1+y^2)/(1 - x^2)

Find the particular solution of the differential equation (dy)/(dx)=-4 x y^2 given that y=1 , when x=0

Find the general solution of the differential equation (dy)/(dx) = (x+1)/(2-y) (y ne 2)