Home
Class 12
MATHS
If omega ne 1 and omega^3=1 then (a om...

If `omega ne 1 and omega^3=1` then
`(a omega+b+c omega^2)/(a omega^2+b omega+c)+(a omega^2+b+c omega)/(a+b omega+ c omega^2)` is equal to a)2 b)`omega` c)`2 omega` d)`2 omega^2`

A

2

B

`omega`

C

`2 omega`

D

`2 omega^2`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If omega is an imaginary cube root of unity, then (1 + omega - omega^(2))^(7) is equal to

Let zne1 be a complex number and let omega=x+iy,yne0 . If (omega-baromegaz)/(1-z) is purely real, then |z| is equal to a) |omega| b) |omega|^(2) c) (1)/(|omega|^(2)) d)1

If omega is a complex cube root of unity, show that [[1 , omega, omega^2], [ omega, omega^2, 1],[ omega^2, 1, omega]] [[1],[ omega],[ omega^2]]=[[0],[ 0],[ 0]]

The value of |(1,omega,2omega^(2)),(2,2omega^(2),4omega^(3)),(3,3omega^(3),6omega^(4))| is equal to (where omega is imaginary cube root of unity

If 1, omega_(1), omega_(2),…omega_(6) " are " 7^(th) roots of unity then Im (omega_(1) + omega_(2)+ omega_(4)) is equal to

If omega is a cube root of unity, then find (3+5omega+3omega^(2))^(2)+ (3 +3omega+5omega^(2))^(2)

The value of (2 - omega) (2- omega ^(2)) (2-omega^(10)) (2- omega ^(11)) where omega is the complex cube root of unity, is : a)49 b)50 c)48 d)47

If x= a+ b, y = a omega + b omega^(2), z= a omega^(2) + b omega , then the value of x^(3) + y^(3) + z^(3) is equal to (where omega is imaginary cube root of unity)

If omega be the complex cube root of unity and matrix H=[(omega,0),(0,omega)] , then H^(70) is equal to a)0 b)-H c)H d) H^(2)

IF 1, omega , omega^2 are the cube roots of unity and if [{:(1+omega,2 omega),(-2 omega,-b):}]+[{:(a,-omega),(3 omega,2):}]=[{:(0, omega),(omega,1):}] then a^2+b^2 is equal to