Home
Class 12
MATHS
The sum of the infinite series 2^2/(2!)...

The sum of the infinite series `2^2/(2!)+2^4/(4!)+2^6/(6!)+.....` is equal to a)`(e^2+1)/(2e)` b)`(e^4+1)/(2e^2)` c)`(e^2-1)^2/(2e^2)` d)`(e^2+1)^2/(2e^2)`

A

`(e^2+1)/(2e)`

B

`(e^4+1)/(2e^2)`

C

`(e^2-1)^2/(2e^2)`

D

`(e^2+1)^2/(2e^2)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of the series 1+(3)/(2!) +(7)/(3!)+ (15)/(4!) + ……" to " infty , is : a) e ( e+1) b) e( 1-e) c) 3e-1 d) e(e-1)

The value of int_(0)^(1)sqrt(x)e^(sqrt(x))dx is equal to a) ((e-2))/(2) b) 2(e-2) c) 2e-1 d) 2(e-1)

The value of int _(0) ^(1) (dx)/(e ^(x) + e ) is equal to a) (1)/(e) log ((1 + e )/(2)) b) log ((1 + e )/(2)) c) 1/e log (1 + e) d) log ((2)/(1 + e ))

A poisson variable X satisfies P(X= 1) = P(X = 2) then P(X = 6) equal to a) (4)/(45) e^(-2) b) (1)/(45) e^(-1) c) (1)/(9) e^(-2) d) (1)/(4) e^(-2)

int(4e^(x))/(2e^(x)-5e^(-x))dx is equal to

If y=(logx)^(2) , then (dy)/(dx) at x=e is equal to a)2 b) e/2 c)e d) 2/e

The sum of the series log_(9)3+log_(27)3-log_(81)3+log_(243)3- ....... is a) 1-log_(e)2 b) 1+log_(e)2 c) log_(e)2 d) log_(e)3

The slope of the tangent to the curve y=e^(2x) at (0,1) is.....a)1 b)2 c)0 d)-1

int(1)/((e^(x)+e^(-x))^(2))dx=

The area bounded by the curve y=x(1-log_(e)x) and x-axis is a) (e^(2))/(4) b) (e^(2))/(2) c) (e^(2)-e)/(2) d) (e^(2)-e)/(4)