Home
Class 12
MATHS
The range of the function f(x) = log(e) ...

The range of the function `f(x) = log_(e) (3x^(2) + 4)` is equal to

A

`[log_(e) 2, oo)`

B

`[log_(e) 3, oo)`

C

`[2 log_(e) 3, oo)`

D

`[2 log_(e) 2, oo)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The range of the functions f (x) = x ^(2) + 2x + 2 is

Find the range of the function f(x)=(1+x^2)/(x^2)

The range of the function f(x)=1/(2-"cos" 3x) is

The range of the function f(x) = cot^(-1)log_(0.5) (x^4 -2x^(2) +3) is a) (0,pi) b) (0,3pi//4) c) [3pi//4,pi) d) [pi//2, 3pi//4]

The domain of the function f(x) = (log_2 (x+3) )/(x^2 + 3 x + 2) is