Home
Class 12
MATHS
int (dx)/((x + 1) sqrt(x)) is equal to a...

`int (dx)/((x + 1) sqrt(x))` is equal to a)`tan^(-1) sqrt(x) + C` b)`2 tan^(-1) x + C` c)`2 tan^(-1) (sqrt(x)) + C` d)`tan^(-1) (x^((3)/(2))) + C`

A

`tan^(-1) sqrt(x) + C`

B

`2 tan^(-1) x + C`

C

`2 tan^(-1) (sqrt(x)) + C`

D

`tan^(-1) (x^((3)/(2))) + C`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of tan^(-1)((sqrt(3))/(2))+tan^(-1)((1)/(sqrt(3))) is equal to a) tan^(-1)((5)/(sqrt(3))) b) tan^(-1)((2)/(sqrt(3))) c) tan^(-1)((1)/(2)) d) tan^(-1)((1)/(3sqrt(3)))

int sqrt((1-x)/(1+x))dx is equal to a) sin^(-1)x + sqrt(1 - x^(2)) + C b) sin^(-1) x - 2 sqrt(1 - x^(2)) + C c) 2 sin^(-1) x - sqrt(1 - x^(2)) + C d) sin^(-1)x - sqrt(1 - x^(2)) + C

Prove that tan^(-1)((sqrt(1+x^2)-1)/x)=1/2 tan^(-1)x .

int(dx)/(x-sqrt(x)) is equal to a) 2log|sqrt(x)-1|+C b) 2log|sqrt(x)+1|+C c) log|sqrt(x)-1|+C d) (1)/(2)log|sqrt(x)+1|+C

int( d x)/(e^x+e^(-x)) is equal to a) tan ^(-1)(e^x)+C b) tan ^(-1)(e^-x)+C c) log (e^x-e^-x)+C d) log (e^x+e^-x)+C

int(x+2)/((x^(2)+3x+3)sqrt(x+1))dx is equal to a) (1)/(sqrt(3))tan^(-1)((x)/(sqrt(3)(x+1))) b) (2)/(sqrt(3))tan^(-1)((x)/(sqrt(3(x+1)))) c) (2)/(sqrt(3))tan^(-1)((x)/(sqrt(x+1))) d)None of these

int ((1 + x ) e ^(x))/( sin ^(2) (xe ^(x))) dx is equal to a) - cot (e ^(x)) + C b) tan (xe ^(x)) + C c) tan (e ^(x)) + C d) -cot (x e ^(x)) + C

cos ^(-1) ((3+5 cos x )/(5+3 cos x )) is equal to : a) tan ^(-1) ((1)/(2) tan ""(x)/(2)) b) 2 tan ^(-1) (2 tan ""(x)/(2)) c) (1)/(2) tan ^(-1) (2 tan ""(x)/(2)) d) 2 tan ^(-1) ((1)/(2) tan ""(x)/(2))

intsin^(-1)((2x)/(1+x^(2)))dx is equal to a) xtan^(-1)x-ln|sec(tan^(-1)x)|+C b) xtan^(-1)x+ln|sec(tan^(-1)x)|+C c) xtan^(-1)x-ln|cos(tan^(-1)x)|+C d)None of these