Home
Class 12
MATHS
int (log x)/(x^(2))dx is equal to a)(log...

`int (log x)/(x^(2))dx` is equal to a)`(log x)/(x) + (1)/(x^(2)) +C` b)`-(log x)/(x) + (2)/(x) + C` c)`-(log x)/(x) - (1)/(2x) + C` d)`-(log x)/(x) - (1)/(x) + C`

A

`(log x)/(x) + (1)/(x^(2)) +C`

B

`-(log x)/(x) + (2)/(x) + C`

C

`-(log x)/(x) - (1)/(2x) + C`

D

`-(log x)/(x) - (1)/(x) + C`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

int e^(x log a ) e^(x) dx is equal to :

int_(-10)^(10)log((a+x)/(a-x))dx is equal to

int (3^x)/( sqrt( 1- 9^x )) dx is equal to a) (log 3) sin^(-1) (3^x) + C b) (1)/(3) sin^(-1) (3^x) + C c) ((1)/(log 3)) sin^(-1) (3^x) + C d) (1)/(9) sin^(-1) (3^x) +C

int(ln((x-1)/(x+1)))/(x^(2)-1)dx is equal to a) 1/2(ln((x-1)/(x+1)))^(2)+C b) 1/2(ln((x+1)/(x-1)))^(2)+C c) 1/4(ln((x-1)/(x+1)))^(2)+C d) 1/4(ln((x+1)/(x-1)))

int (dx)/(1 + tan x) is equal to a) (1)/(2) + (1)/(2)log|cos x + sin x|+C b) (x)/(2) + (1)/(2) log|cos x - sin x| +C c) (1)/(2) + (1)/(2) log|cos x - sin x| + C d) (x)/(2) + (1)/(2) log|cos x + sin x| + C

int(1+logx)/((1+xlogx)^(2))dx is equal to a) (1)/(1+xlog|x|)+C b) (1)/(1+log|x|)+C c) (-1)/(1+xlog|x|)+C d) log|(1)/(1+log|x|)|+C

inte^(3logx)(x^(4)+1)^(-1)dx is equal to A) e^(3logx)+c B) (1)/(4)log(x^(4)+1)+c C) (1)/(2)log(x^(4)+1)+c D) (x^(4))/(x^(4)+1)+c

int (1)/( x (log x) log (log x) ) dx is equal to a) log (log x) + C b) log | log (x log x) + C c) log | log | log (log x) || + C d) log | log (log x) | + C

int (sin x + cos x)/( e^(-x) + sin x) dx is equal to a) log | 1-e^(x) sin x| +C b) log | 1 + e^(-x) sin x| + C c) log | 1+e^(x) sin x| + C d) log | 1 -e^(-x) sinx | +C

int(log (x+sqrt(1+x^(2))))/(sqrt(1+x^(2)) )dx is equal to