Home
Class 12
MATHS
If int (f(x))/(log cos x) dx = - log(log...

If `int (f(x))/(log cos x) dx = - log(log cos x) + C`, then f(x) is equal to a)tan x b)`-sin x` c)`-cos x` d)`-tan x`

A

tan x

B

`-sin x`

C

`-cos x`

D

`-tan x`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int e^(x log a ) e^(x) dx is equal to :

If f (x) = cos x - cos ^(2) x + cos ^(3) x -... to oo, then int f (x) dx equals to :

y = log _(a) x + log _(x) a + log _(x) x + log _(a) a, then (dy)/(dx) is equal to :

If f(x) = cos^(-1) ((2 cos x + 3 sin x)/( sqrt(13) ) ) , then [f' (x)]^2 is equal to a) sqrt(1+x) b) 1+2x c) 2 d) 1

If f(x) = sin x + cos x, x in (-oo, oo) and g(x) = x^(2), x in (-oo, oo) , then (fog)(x) is equal to a)1 b)0 c) sin^(2) (x) + cos (x^(2)) d) sin (x^(2)) + cos (x^(2))

int( sin ^2 x-cos ^2 x)/(sin ^2 x cos ^2 x) d x is equal to a) tan x+cot x+C b) tan x+cosec x+C c) -tan x+cot x+C d) tan x+sec x+C

int_(0)^(pi//2) log((cos x)/(sin x)) dx is equal to