Home
Class 12
MATHS
int (4e^(x) + 6e^(-x))/(9e^(x) - 4e^(-x)...

`int (4e^(x) + 6e^(-x))/(9e^(x) - 4e^(-x))dx` is equal to

A

`(3)/(2)x + (35)/(36)log|9e^(2x) - 4| + C`

B

`(3)/(2)x - (35)/(36) log|9e^(2x) - 4|+C`

C

`-(3)/(2)x + (35)/(36)log|9e^(2x) - 4|+C`

D

`-(5)/(2) x + (35)/(36)log |9e^(2x) - 4|+C`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int(4e^(x))/(2e^(x)-5e^(-x))dx is equal to

int_(-1)^(1)(e^(x^(3)) + e^(-x^(3)))(e^(x) - e^(-x)) dx is equal to

int (dx)/(e^(x)+e^(-x)+2) is equal to

int(1+x)/(x+e^(-x))dx is equal to

int ((1 + x ) e ^(x))/( sin ^(2) (xe ^(x))) dx is equal to a) - cot (e ^(x)) + C b) tan (xe ^(x)) + C c) tan (e ^(x)) + C d) -cot (x e ^(x)) + C

int e^(x log a ) e^(x) dx is equal to :

int sqrt(e^(x)-1) dx is equal to :

int((1+x)e^(x))/("cot" (xe^(x)))dx is equal to

Find int ((e ^(x) - e ^(-x)) dx)/( (e ^(x) + e ^(-x))