Home
Class 12
MATHS
int(0)^(1) xe^(-5x) dx is equal to a)(1)...

`int_(0)^(1) xe^(-5x) dx` is equal to a)`(1)/(25) - (6e^(-5))/(25)` b)`(1)/(25) + (6e^(-5))/(25)` c)`-(1)/(25) - (6e^(-5))/(25)` d)`(1)/(25) - (1)/(5) e^(-5)`

A

`(1)/(25) - (6e^(-5))/(25)`

B

`(1)/(25) + (6e^(-5))/(25)`

C

`-(1)/(25) - (6e^(-5))/(25)`

D

`(1)/(25) - (1)/(5) e^(-5)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(1)sqrt(x)e^(sqrt(x))dx is equal to a) ((e-2))/(2) b) 2(e-2) c) 2e-1 d) 2(e-1)

int (xe ^(x))/( (1 + x )^(2)) dx is equal to a) ( - e ^(x))/( x +1) + C b) (e ^(x))/( x +1 ) + C c) (xe ^(x))/( x +1)+ C d) (- xe ^(x))/( x +1 ) +C

int_(0)^(1)1/((x^(2)+16)(x^(2)+25))dx is equal to a) 1/(5)[1/(4)"tan"^(-1)(1/(4))-1/(5)"tan"^(-1)(1/(5))] b) 1/(9)[1/(4)"tan"^(-1)(1/(4))-1/(5)"tan"^(-1)(1/(5))] c) 1/(4)[1/(4)"tan"^(-1)(1/(4))-1/(5)"tan"^(-1)(1/(5))] d) 1/(9)[1/(5)"tan"^(-1)(1/(4))-1/(4)"tan"^(-1)(1/(5))]

The value of int _(0) ^(1) (dx)/(e ^(x) + e ) is equal to a) (1)/(e) log ((1 + e )/(2)) b) log ((1 + e )/(2)) c) 1/e log (1 + e) d) log ((2)/(1 + e ))

The value of the integral int_(0)^(1) x(1 - x)^(5)dx is equal to a) (1)/(6) b) (1)/(7) c) (6)/(7) d) (1)/(42)

lim _(x to 0) (log (1 + 3x ^(2)))/( x ( e ^(5x) -1 )) is equal to a) 3/5 b) 5/3 c) (-3)/(5) d) (-5)/(3)

int(2e^(5x)+e^(4x)-4e^(3x)+4e^(2x)+2e^(x))/((e^(2x)+4)(e^(2x)-1)^(2))dx= a) "tan"^(-1)(e^(x))/(2)-(1)/(e^(2x)-1)+C b) "tan"^(-1)e^(x)-(1)/(2(e^(2x)-1))+C c) "tan"^(-1)(e^(x))/(2)-(1)/(2(e^(2x)-1))+C d) 1-"tan"^(-1)((e^(x))/(2))+(1)/(2(e^(2x)-1))+C

If y=tan^(-1)((4x)/(1+5x^(2)))+tan^(-1)((2+3x)/(3-2x)) , then (dy)/(dx) is equal to a) (5)/(1+25x^(2)) b) (1)/(1+25x^(2)) c)0 d) (5)/(1-25x^(2))

The integral int(1+x-1/x)e^(x+1/x)dx is equal to a) (x-1)e^(x+1/x)+c b) xe^(x+1/x)+c c) (x+1)e^(x+1/x)+c d) -xe^(x+1/x)+c