Home
Class 12
MATHS
The general solution of the differential...

The general solution of the differential equation `(dy)/(dx) = e^(y) (e^(x) + e^(-x) + 2x)` is a)`e^(-y) = e^(x) - e^(-x) + x^(2) + C` b)`e^(-y) = e^(-x) - e^(x) - x^(2) + C` c)`e^(-y) = -e^(-x) - e^(x) - x^(2) + C` d)`e^(y) = e^(-x) + e^(x) + x^(2) + C`

A

`e^(-y) = e^(x) - e^(-x) + x^(2) + C`

B

`e^(-y) = e^(-x) - e^(x) - x^(2) + C`

C

`e^(-y) = -e^(-x) - e^(x) - x^(2) + C`

D

`e^(y) = e^(-x) + e^(x) + x^(2) + C`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The general solution of the differential equation (dy)/(dx)=e^(x+y) is

The solution of the differential equation (dy)/(dx) = (3e^(2x) + 3e^(4x) )/( e^(x) + e^(-x) ) is a) y= e^(3x) + C b) y=2e^(2x) + C c) y= e^(x) + C d) y= e^(4x) + C

The general solution of the differential equation dy/dx=e^(x-y) is a) e^y+e^x=C b) e^-y+e^-x=C c) e^y-e^x=C d) e^-y-e^-x=C

The solution of the differential equation (dy)/(dx) + 1 = e^(x+y) is a) x + e^(x+y) = c b) x-e^(x+y) = c c) x + e^(-(x+y)) = c d) x-e^(-(x+y))=c

Find the general solution of the following differential equation '(e^x + e^-x)dy - (e^x - e^-x)dx = 0

y=2e^(2x)-e^(-x) is a solution of the differential equation

Solve the differential equation y e^(x/y) d x=(x e^(x/y)+y^2) d y(y ne 0)

Find the general solution of the following differential equation e^x tan y dx + (1-e^x)sec^2 y dy =0

Solve the differential equation 3 e^x tan y d x-(1+e^x) (sec ^(2) y) d y=0