Home
Class 12
MATHS
The value of i - i^(2) + i^(3) - i^(4) +...

The value of `i - i^(2) + i^(3) - i^(4) +.......-i^(100)` is equal to a)i b)-i c)1-i d)0

A

i

B

`-i`

C

`1 - i`

D

0

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

(10i)/(1+2i) is equal to

Write the values of i^2, i^4 and i^6

If z = i^( 9) + i^( 19) , then z is equal to

The value of Sigma_(k=0)^(n)(i^(k)+i^(k+1)) , where i^(2)=-1 , is equal to

If z = (2-i)/(i) , then R e(z^(2)) + I m(z^(2)) is equal to a)1 b)-1 c)2 d)-2

The value of (1)/(i) + (1)/(i^2) + (1)/(i^3) + …. + (1)/(i^(102) ) is

Let i^(2)=-1 , then (i^(10)-1/(i^(11)))+(i^(11)-1/(i^(12)))+(i^(12)-1/(i^(13)))+(i^(13)-1/(i^(14)))+(i^(14)+1/(i^(15))) is equal to a) -1+i b) -1-i c) 1+i d) -i

If z = ( 7-i)/(3-4i) , " then " z^(14) is equal to :

If A= [(1,0),(1,1)] then A^(n)+nI is equal to a) I b)nA c)nA-I d)I+nA

The value of (i^(18) + ((1)/(i))^(25))^(3) is equal to