Home
Class 12
MATHS
If (1 - x)^(n) = c(0) - c(1)x + c(2)x^(2...

If `(1 - x)^(n) = c_(0) - c_(1)x + c_(2)x^(2) - c_(3)x^(3) +...+ (-1)^(n) c_(n) x^(n)`, then `(c_(0))/(2)-(c_(1))/(3)+(c_(2))/(4)-(c_(3))/(5)+...+(-1)^(n) (c_(n))/(n+2)` is

A

`(1)/(n(n+1))`

B

`(1)/((n+1)(n+2))`

C

`(1)/((n+1)(n+3))`

D

`(1)/(n(n+3))`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (C_(1))/(2)+(C_(3))/(4) +(C_(5))/(6)+….=2^(n)/(n+1) where C_(r) =^(n)C_(r)

Prove that (""^(n)C_(0))/(1)+(""^(n)C_(2))/(3)+(""^(n)C_(4))/(5)+(""^(n)C_(6))/(7)+...=(2^(n))/(n+1)

Prove that ""^(n)C_(0)""^(n)C_(0)-^(n+1)C_(1) ""^(n)C_(1)+^(n+2)C_(2)""^(n)C_(2)....=(-1)^(n)

If (dx)/(x^(2)(x^(n)+1)^((n-1)//n))=-[f(x)]^(1//n)+c , then f(x) is

Three distinct A.P. s' have same first term common differences as d_(1) ,d_(2) ,d_(3) and n^(th) terms as a_(n) , b_(n) ,c_(n) respectively such that (a_(1))/(d_(1))=(2b_(1))/(d_(2))=(3c_(1))/(d_(3)). If (a_(7))/(c_(6))=(3)/(7) then find the value of (b_(7))/(c_(6)) .

If (1+x)^(n) = overset(n)underset(r=0) Sigma C_(r) x^(r ) , show that C_(0)+(C_(1))/(2)+….+(C_(n))/(n+1)=(2^(n+1)-1)/(n+1)