Home
Class 12
MATHS
If 2 sin^(-1) x - cos^(-1) x = (pi)/(2),...

If `2 sin^(-1) x - cos^(-1) x = (pi)/(2)`, then x is equal to

A

`(1)/(sqrt(2))`

B

`-(1)/(sqrt(2))`

C

`(-sqrt(3))/(2)`

D

`(sqrt(3))/(2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin ^(-1) x + cos ^(-1) 2x = (pi)/(6), then the value of x is

sin^(-1)(1-x)-2sin^(-1)x= pi/2 ,then find x

If sin x + cos x = sqrt(2) , then sin x cos x is equal to

If sin^(-1)x+sin^(-1)y =(2pi)/3 , then find the value of cos^(-1)x +cos^(-1)y

Solve 2cos^(-1)x+sin^(-1)x =(11pi)/6

If "cos"^(-1)x+"cos"^(-1)y=(2pi)/(7) , then the value of "sin"^(-1)x+"sin"^(-1)y is

If - pi/2 lt sin^-1 x lt pi/2 then tan (sin^-1 x) is equal to a) x/(1-x^2) b) x/(1+x^2) c) x/sqrt(1-x^2) d) 1/sqrt(1-x^2)

If |sin^(-1)x|+|cos^(-1)x|=pi/2 then x in a)R b) [-1,1] c) [0,1] d) phi

If y = sin^(2) cot^(-1) sqrt((1+x)/(1-x)) , then (dy)/(dx) is equal to a)2 sin 2x b)sin 2x c) (1)/(2) d) -(1)/(2)

If sin^(-1)x+sin^(-1)y+sin^(-1)z =(3pi)/2 , then find the value of x^2+y^2+z^2