Home
Class 12
MATHS
The value of tan^(-1) (2) + tan^(-1) (3)...

The value of `tan^(-1) (2) + tan^(-1) (3)` is equal to a)`(3pi)/(4)` b)`(pi)/(4)` c)`(pi)/(3)` d)`tan^(-1) (6)`

A

`(3pi)/(4)`

B

`(pi)/(4)`

C

`(pi)/(3)`

D

`tan^(-1) (6)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of tan^(-1) ((7)/(4))- tan^(-1) ((3)/(11)) is equal to

The value of sin^(-1){cos(4095^(@))} is equal to a) -(pi)/(3) b) (pi)/(6) c) -(pi)/(4) d) (pi)/(4)

2"tan"^(-1)(1/(3))+"tan"^(-1)(1/(4)) is equal to

The argument of the complex number ((i)/(2) - (2)/(i)) is equal to a) (pi)/(4) b) (3 pi)/(4) c) (pi)/(12) d) (pi)/(2)

The value of tan^(-1)((sqrt(3))/(2))+tan^(-1)((1)/(sqrt(3))) is equal to a) tan^(-1)((5)/(sqrt(3))) b) tan^(-1)((2)/(sqrt(3))) c) tan^(-1)((1)/(2)) d) tan^(-1)((1)/(3sqrt(3)))

The value of int _(-pi //4) ^(pi//4) x ^(3) sin ^(4) x dx is equal to : a) pi/4 b) pi/2 c) pi/8 d) 0

Find the value of tan((19pi)/3)

If |vec(a)-vec(b)|= |vec(a)|=|vec(b)|=1 , then the angle between vec(a) and vec(b) is equal to a) (pi)/(3) b) (3pi)/(4) c) (pi)/(2) d)0

Solve tan^-1 2x+tan^-1 3x=pi/4

int_(0) ^(pi//2) (dx)/( 1 + tan^(3) x) is equal to a)1 b) pi c) pi/2 d) pi/4