Home
Class 12
MATHS
The parametric equations of the circle ...

The parametric equations of the circle
`x^(2) + y^(2) + x + sqrt(3)y = 0` are

A

`x = 1 + cos theta, y = (sqrt(3))/(2) + sin theta`

B

`x = - (1)/(2) + cos theta, y = - (sqrt(3))/(2) + sin theta`

C

`x = (1)/(2) + cos theta, y = - (sqrt(3))/(2) + sin theta`

D

`x = (1)/(2) + (1)/(2) cos theta, y = (sqrt(3))/(2) + (1)/(2) sin theta`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The parametric form of equation of the circle x^(2)+y^(2)-6x+2y-28=0 is

The equation of one of the diameters of the circle x^(2) - y^(2) - 6x + 2y = 0 is a)x - 3y = 0 b)x + 3y = 0 c)3x + y = 0 d)3x - y = 0

If the equations of the tangent to the circle x^(2)+ y^(2)- 2x + 6y -6 =0 parallel to 3x - 4y + 7=0 is 3x - 4y +k=0 , then the values of k are : a) 5,-35 b) -5,35 c) 7,-32 d) -7,32

The centre and radius of the circle x^(2)+y^(2)-4x+2y=0 are