Home
Class 12
MATHS
If x in((pi)/(2),pi), then (secx-1)/(sec...

If `x in((pi)/(2),pi)`, then `(secx-1)/(secx+1)` is equal to a)`(cosecx+cotx)^(2)` b)`(sinx-cosx)^(2)` c)`(cosecx-cotx)^(2)` d)`(secx+tanx)^(2)`

A

`(cosecx+cotx)^(2)`

B

`(sinx-cosx)^(2)`

C

`(cosecx-cotx)^(2)`

D

`(secx+tanx)^(2)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int(secx+tanx)^(2)dx=

If A=int_(0)^(pi)(cosx)/(x+2)^(2)dx , then int_(0)^(pi//2)(sin2x)/(x+1)dx is equal to

inte^(tanx)(sinx-secx)dx , is equal to a) e^(tanx)*cosx+C b) e^(tanx)*sinx+C c) -e^(tanx)*cosx+C d) e^(tanx)*secx+C

inte^(-x)(1-tanx)secxdx is equal to a) e^(-x)secx+c b) e^(-x)tanx+c c) -e^(-x)tanx+c d) -e^(-x)secx+c

int_(0) ^(pi//2) (dx)/( 1 + tan^(3) x) is equal to a)1 b) pi c) pi/2 d) pi/4

If - pi/2 lt sin^-1 x lt pi/2 then tan (sin^-1 x) is equal to a) x/(1-x^2) b) x/(1+x^2) c) x/sqrt(1-x^2) d) 1/sqrt(1-x^2)

int _(0) ^(pi//2) (cos x )/( 1 + sin x ) dx equals to a) log 2 b) 2 log 2 c) (log2) ^(2) d) 1/2 log 2

If (tan^(-1)x)^(2)+(cot^(-1)x)^(2)=(5pi^(2))/(8) , then x is equal to a)0 b)2 c)1 d)-1