Home
Class 12
MATHS
If tan^(-1)2x+tan^(-1)3x=(pi)/(2), then ...

If `tan^(-1)2x+tan^(-1)3x=(pi)/(2)`, then the value of x is equal to a)`(1)/(sqrt(6))` b)`(1)/(6)` c)`(1)/(sqrt(3))` d)`(1)/(sqrt(2))`

A

`(1)/(sqrt(6))`

B

`(1)/(6)`

C

`(1)/(sqrt(3))`

D

`(1)/(sqrt(2))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)x + tan^(-1)y = (2pi)/(3) , then cot^(-1) x + cot^(-1)y is equal to

The value of "sin"(31)/(3)pi is a) (sqrt3)/(2) b) (1)/(sqrt2) c) (-sqrt3)/(2) d) (-1)/(sqrt2)

The minimum values of sin x + cos x is a) sqrt2 b) -sqrt2 c) (1)/(sqrt2) d) - (1)/(sqrt2)

If sin4A-cos2A=cos4A-sin2A,(0ltAlt(pi)/(4)), then the value of tan4A is a)1 b) (1)/(sqrt(3)) c) sqrt(3) d) (sqrt(3)-1)/(sqrt(3)+1)

The value of tan^(-1)((sqrt(3))/(2))+tan^(-1)((1)/(sqrt(3))) is equal to a) tan^(-1)((5)/(sqrt(3))) b) tan^(-1)((2)/(sqrt(3))) c) tan^(-1)((1)/(2)) d) tan^(-1)((1)/(3sqrt(3)))

If f(x)=cos(tan^(-1)x) , then the value of the intgral int_(0)^(1)xf''(x)dx is a) (3-sqrt(2))/(2) b) (3+sqrt(2))/(2) c)1 d) 1-(3)/(2sqrt(2))

inttan(sin^(-1)x)dx is equal to a) (1)/(sqrt(1-x^(2)))+c b) sqrt(1-x^(2))+c c) (-x)/(sqrt(1-x^(2)))+c d) -sqrt(1-x^(2))+c

If f'(x)=(1)/(-x+sqrt(x^(2)+1)) and f(0)=-(1+sqrt(2))/(2) then f(1) is equal to a) -log(sqrt(2)+1) b)1 c) 1+sqrt(2) d) 1/2log(1+sqrt(2))

If - pi/2 lt sin^-1 x lt pi/2 then tan (sin^-1 x) is equal to a) x/(1-x^2) b) x/(1+x^2) c) x/sqrt(1-x^2) d) 1/sqrt(1-x^2)