Home
Class 12
MATHS
The equation of the straight line making...

The equation of the straight line making angles `60^(@),60^(@)and45^(@)` with positive direction of the coordinate axes and passing through the point `(2,1,-1)` is a)`sqrt(2)(x-2)=sqrt(2)(y-1)=(z+1)` b)`(x-2)=sqrt(2)(y-1)=(z+1)` c)`sqrt(2)(x-2)=(y-1)=(z+1)` d)`(x-2)=sqrt(2)(y-1)=sqrt(2)(z+1)`

A

`sqrt(2)(x-2)=sqrt(2)(y-1)=(z+1)`

B

`(x-2)=sqrt(2)(y-1)=(z+1)`

C

`sqrt(2)(x-2)=(y-1)=(z+1)`

D

`(x-2)=sqrt(2)(y-1)=sqrt(2)(z+1)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The equation of the plane through the point (2,-1,-3) and parallel to the lines (x-1)/(3)= (y+2)/(2)= ( z)/(-4) and ( x)/(2)= (y-1)/(-3) = (z-2)/(2) is

lim_(x rarr oo) sqrt(x^(2)+1)- sqrt(x^(2)-1) = a)-1 b)1 c)0 d)2

The value of cos [ tan^-1 {sin (cot^-1 (x))}] is a) sqrt((x^2+1)/(x^2-1)) b) sqrt((1-x^2)/(x^2+2)) c) sqrt((1-x^2)/(1+x^2)) d) sqrt((x^2+1)/(x^2+2))

In the family of concentric circles 2(x^(2) + y^(2)) = k , the radius of the circle passing through (1, 1) is a) sqrt(2) b)4 c) 2sqrt(2) d)1

If f'(x)=(1)/(-x+sqrt(x^(2)+1)) and f(0)=-(1+sqrt(2))/(2) then f(1) is equal to a) -log(sqrt(2)+1) b)1 c) 1+sqrt(2) d) 1/2log(1+sqrt(2))

Evaluate lim_(x rarr 1) (sqrt(x^(2)-1)+sqrt(x-1))/(sqrt(x^(2)-1))

If Q is the image of the point P (2,3,4) under the reflection in the plane x-2y+5z=6 then the equation of the line PQ is a) (x-2)/(-1)= (y-3)/2= (z-4)/5 b) (x-2)/(1)= (y-3)/(-2)= (z-4)/5 c) (x-2)/(-1)= (y-3)/(-2)= (z-4)/5 d) (x-2)/(1)= (y-3)/(2)= (z-4)/5

If x takes negative permissible values , then sin^(-1) x= a) cos^(-1)sqrt(1-x^2) b) -cos^(-1)sqrt(1-x^2) c) cos^(-1)sqrt(x^2-1) d) pi-cos^(-1)sqrt(1-x^2)