Home
Class 12
MATHS
The value of lim(xrarr0)""(log(1+2x))/(x...

The value of `lim_(xrarr0)""(log(1+2x))/(x)` is equal to

A

1

B

2

C

3

D

`(3)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr0)(sin 5x)/(5x) is ………

f(x) = |(cosx,x,1),(2 sin x, x^(2),2x),(tan x, x ,1)| . Then value of lim_(xto0)(f'(x))/(x) is equal to a)1 b)-1 c)0 d)None of these

Evalute lim_(xrarr0)(log(1+x))/sinx

lim_(xrarr0^(-))""(1)/(3-2^(1//x)) is equal to

Evaluate lim_(x rarr 0) (log (1 + x/5))/x

Evaluate lim_(x rarr 0) (log (1 - x/5))/x

The value of lim_(xrarr0)(sinx)/x is ……

lim_(xrarr0)(sqrt(1+x)-1)/x

Evalute lim_(xrarr0)((1-x)^n-1)/(x)