Home
Class 12
MATHS
If y=(logx)^(2), then (dy)/(dx) at x=e i...

If `y=(logx)^(2)`, then `(dy)/(dx)` at `x=e` is equal to a)2 b)`e/2` c)e d)`2/e`

A

2

B

`(e)/(2)`

C

e

D

`(2)/(e)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(y) = e^(2(x-y)) , then (dy)/(dx) is equal to

If y = e ^((1//2) log (1 + tan ^(2) x), ) then (dy)/(dx) is equal to :

int (dx)/(e^(x)+e^(-x)+2) is equal to

If int_(0)^(x)f(t)dt=x^(2)+e^(x)(xgt0) then f(1) is equal to a)1+e b)2+e c)3+e d)e

If f(x)=log_(x^(3))(log_(e)x^(2)) , then f'(x) at x=e is a) (1)/(3e)(1-log_(e)2) b) (1)/(3e)(1+log_(e)2) c) (1)/(3e)(-1+log_(e)2) d) -(1)/(3e)(1+log_(e)2)

If I=int_(1//e)^(e)|logx|(dx)/(x^(2)) , then I equals a)2 b) 2//e c) 2(1-1//e) d)0

The value of int_(0)^(1)sqrt(x)e^(sqrt(x))dx is equal to a) ((e-2))/(2) b) 2(e-2) c) 2e-1 d) 2(e-1)