Home
Class 12
MATHS
If y^(x)=2^(x), then (dy)/(dx) is equal ...

If `y^(x)=2^(x)`, then `(dy)/(dx)` is equal to

A

`(y)/(x)log((2)/(y))`

B

`(x)/(y)log((2)/(y))`

C

`(y)/(x)log((y)/(2))`

D

`(x)/(y)log((y)/(2))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(cosx)^(2x) , then (dy)/(dx) is equal to

If x^(y) = e^(2(x-y)) , then (dy)/(dx) is equal to

If y = cot^(-1) ("tan" (x)/(2)) , then (dy)/(dx) is equal to

If y = sin^(-1) sqrt(1-x) , then (dy)/(dx) is equal to

If y = e ^((1//2) log (1 + tan ^(2) x), ) then (dy)/(dx) is equal to :

If y = tan^(-1)((cos x)/(1+sin x)) , then (dy)/(dx) is equal to

If y= (1)/( 1+ x+x^2) , then (dy)/(dx) is equal to a) y^(2) (1+ 2x) b) (-1 +2x)/( y^2) c) (1+2x)/(y^2) d) -y^(2) (1+2x)

IF y= log_2 log_2 (x) then (dy)/(dx) is equal to

If y="sec"("tan"^(-1)x) , then (dy)/(dx) is equal to