Home
Class 12
MATHS
If the angle between the curves y=2^(x) ...

If the angle between the curves `y=2^(x) and y=3^(x)` is `alpha`, then the value of `tan alpha` is equal to
a)`(log((3)/(2)))/(1+(log2)(log3))` b)`(6)/(7)`c)`(1)/(7)`d)`(log(6))/(1+(log2)(log3))`

A

`(log((3)/(2)))/(1+(log2)(log3))`

B

`(6)/(7)`

C

`(1)/(7)`

D

`(log(6))/(1+(log2)(log3))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int _(2) ^(4) ((log t )/( t)) dt is a) 1/2 (log 2) ^(2) b) 3/2 (log 2) ^(2) c) (log 2) ^(2) d) 5/2 (log 2) ^(2)

If f(x+y)=2f(x)f(y),f'(5)=1024(log2)andf(2)=8 , then the value of f '(3) is a) 64(log2) b) 128(log2) c)256 d)256(log2)

Choose the correct answer int_3^(9)3/xdx is equal to a)3log3 b)log3 c) 9log3 d)3log9

The coefficient of x^(3) in the expansion of 3^(x) is : a) ( 3^(3))/(6) b) ((log3)^(3))/(3) c) ( log(3^(3))/(6)) d) ((log3)^(3))/(6)

If f(x)=log[e^(x)((3-x)/(3+x))^(1//3)] then f'(1) is equal to a) (3)/(4) b) (2)/(3) c) (1)/(3) d) (1)/(2)

The differential equation representing the family of curves y=xe^(cx) (c is a constant ) is a) (dy)/(dx)=(y)/(x)(1-"log"(y)/(x)) b) (dy)/(dx)=(y)/(x)"log"((y)/(x))+1 c) (dy)/(dx)=(y)/(x)(1+"log"(y)/(x)) d) (dy)/(dx)+1=(y)/(x)"log"((y)/(x))