Home
Class 12
MATHS
The minimum value of the function f(x)=(...

The minimum value of the function `f(x)=(1)/(sinx+cosx)` in the interval `[0,(pi)/(2)]` is

A

`(sqrt(2))/(2)`

B

`-(sqrt(2))/(2)`

C

`(2)/(sqrt(3)+1)`

D

`-(2)/(sqrt(3)+1)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The maximum value of the function f(x)=sinx is……

Verify mean value theorem for the function f(x)=x+frac1x in the interval [1,3] .

The minimum value of 2costheta+1/(sintheta)+sqrt(2)tantheta in the interval (0, pi/2) is :

Verify mean value theorem for the function f(x)=x^2-4x-3 in the interval [1,4] .

Find the value of c in Lagrange's theorem for the function f(x) = log sin x in the interval [(pi)/(6), (5pi)/(6)] .

Consider the functions f(x)=sinx and g(x)=cosx in the interval [0,2pi] Find the x coordinates of the meeting points of the functions.

Find local maximum and local minimum if any for the function. h(x)=sinx+cosx. 0 lt x lt (pi/2)

Consider the functions f(x) = sin x and g(x) = cos x in the interval [0,2 pi] find the area enclosed by these curves in the given interval ?